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We study the formation of a ruling coalition in non-democratic societies where institutions do not
enable political commitments. Each individual is endowed with a level of political power. The ruling
coalition consists of a subset of the individuals in the society and decides the distribution of resources. A
ruling coalition needs to contain enough powerful members to win against any alternative coalition that
may challenge it, and it needs to be self-enforcing, in the sense that none of its subcoalitions should be
able to secede and become the new ruling coalition. We present both an axiomatic approach that captures
these notions and determines a (generically) unique ruling coalition and the analysis of a dynamic game
of coalition formation that encompasses these ideas. We establish that the subgame-perfect equilibria
of the coalition formation game coincide with the set of ruling coalitions resulting from the axiomatic
approach. A key insight of our analysis is that a coalition is made self-enforcing by the failure of its
winning subcoalitions to be self-enforcing. This is most simply illustrated by the following example: with
“majority rule”, two-person coalitions are generically not self-enforcing and consequently, three-person
coalitions are self-enforcing (unless one player is disproportionately powerful). We also characterize the
structure of ruling coalitions. For example, we determine the conditions under which ruling coalitions are
robust to small changes in the distribution of power and when they are fragile. We also show that when the
distribution of power across individuals is relatively equal and there is majoritarian voting, only certain
sizes of coalitions (e.g. with majority rule, coalitions of size 1, 3, 7, 15, etc.) can be the ruling coalition.

1. INTRODUCTION

We study the formation of a ruling coalition in a non-democratic (weakly institutionalized) envi-
ronment. A ruling coalition must be powerful enough to impose its wishes on the rest of the
society. A key ingredient of our analysis is that because of the absence of strong, well-functioning
institutions, binding agreements are not possible.1 This has two important implications: first,
members of the ruling coalition cannot make binding offers on how resources will be distributed;
second, and more importantly, members of a candidate ruling coalition cannot commit to not
eliminating (sidelining) fellow members in the future. Consequently, there is always the danger
that once a particular coalition has formed and has centralized power in its hands, a subcoalition
will try to remove some of the original members of the coalition in order to increase the share
of resources allocated to itself. Ruling coalitions must therefore not only be powerful enough

1. Acemoglu and Robinson (2006) provide a more detailed discussion and various examples of commitment prob-
lems in political decision making. The term weakly institutionalized polities is introduced in Acemoglu, Robinson and
Verdier (2004) to describe societies in which institutional rules do not constrain political interactions among various
social groups or factions.
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988 REVIEW OF ECONOMIC STUDIES

to be able to impose their wishes on the rest of the society, but also self-enforcing so that none
of their subcoalitions are powerful enough and wish to split from or eliminate the rest of this
coalition. These considerations imply that the nature of ruling coalitions is determined by a trade-
off between “power” and “self-enforcement”.

More formally, we consider a society consisting of an arbitrary number of individuals with
different amounts of political or military powers (guns). Any subset of these individuals can form
a coalition and the power of the coalition is equal to the sum of the powers of its members. We
formalize the interplay between power and self-enforcement as follows: a coalition with suffi-
cient power is winning against the rest of the society and can centralize decision-making powers
in its own hands (e.g. eliminating the rest of the society from the decision-making process). How
powerful a coalition needs to be in order to be winning is determined by a parameter α. When
α = 1/2, this coalition simply needs to be more powerful than the rest of the society, so this
case can be thought of as “majority rule”. When α > 1/2, the coalition needs “supermajority” or
more than a certain multiple of the power of the remainder of the society. Once this first stage
is completed, a subgroup can secede from or sideline the rest of the initial winning coalition if
it has enough power and wishes to do so. This process continues until a self-enforcing coalition,
which does not contain any subcoalitions that wish to engage in further rounds of eliminations,
emerges. Once this coalition, which we refer to as the ultimate ruling coalition (URC), is formed,
the society’s resources are distributed according to some predetermined rule (e.g. resources may
be distributed among the members of this coalition according to their powers). This simple game
formalizes the two key consequences of weak institutions mentioned above: (1) binding agree-
ments on how resources will be distributed are not possible; (2) subcoalitions cannot commit to
not sidelining their fellow members in a particular coalition.2

Our main results are as follows. First, we characterize the equilibria of this class of games
under general conditions. We show that a ruling coalition always exists and is “generically”
unique. Moreover, the equilibrium always satisfies some natural axioms that are motivated by the
power and self-enforcement considerations mentioned above. Therefore, our analysis establishes
the equivalence between an axiomatic approach to the formation of ruling coalitions (which in-
volves the characterization of a mapping that determines the ruling coalition for any society and
satisfies a number of natural axioms) and a non-cooperative approach (which involves character-
izing the subgame-perfect equilibria (SPE) of a game of coalition formation). We also show that
the URC can be characterized recursively. Using this characterization, we establish the following
results on the structure of URCs.

1. Despite the simplicity of the environment, the URC can consist of any number of players,
and may include or exclude the most powerful individuals in the society. Consequently,
the equilibrium pay-off of an individual is not monotonic in his power. The most powerful
player will belong to the ruling coalition only if he is powerful enough to win by himself
or weak enough to be a part of a smaller self-enforcing coalition.

2. An increase in α, that is, an increase in the degree of supermajority needed to eliminate
opponents, does not necessarily lead to larger URCs, because it stabilizes otherwise non-
self-enforcing subcoalitions, and as a result, destroys larger coalitions that would have been
self-enforcing for lower values of α.

3. Self-enforcing coalitions are generally “fragile”. For example, under majority rule (i.e. α =
1/2), adding or subtracting one player from a self-enforcing coalition necessarily makes it
non-self-enforcing.

2. The game also introduces the feature that once a particular group of individuals has been sidelined, they cannot
be brought back into the ruling coalition. This feature is adopted for tractability.

c© 2008 The Review of Economic Studies Limited
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ACEMOGLU ET AL. COALITION FORMATION 989

4. Nevertheless, URCs are (generically) continuous in the distribution of power across indi-
viduals in the sense that a URC remains so when the powers of the players are perturbed.

5. Coalitions of certain sizes are more likely to emerge as the URC. For example, with ma-
jority rule (α = 1/2) and a sufficiently equal distribution of powers among individuals, the
URC must have size 2k −1 where k is an integer (i.e. 1, 3, 7, 15,. . . ). A similar formula for
the size of the ruling coalition applies when α > 1/2.

We next illustrate some of the main interactions using a simple example.

Example 1. Consider two agents A and B. Denote their powers γA > 0 and γB > 0, and
assume that the decision-making rule requires power-weighted majority, that is, α = 1/2. This
implies that if γA > γB, then starting with the coalition {A, B}, the agent A will form a majority
by himself. Conversely, if γA < γB, then agent B will form a majority. Thus, “generically” (i.e.
as long as γA �= γB), one of the members of the two-person coalition can secede and form a
subcoalition that is powerful enough within the original coalition. Since each agent will receive
a higher share of the scarce resources in a coalition that consists of only himself than in a two-
person coalition, two-person coalitions are generically not self-enforcing.

Now, consider a coalition consisting of three agents, A, B, and C with powers γA, γB,
and γC , and suppose that γA < γB < γC < γA + γB. Clearly, no two-person coalition is self-
enforcing. The lack of self-enforcing subcoalitions of {A, B,C} implies that {A, B,C} is itself
self-enforcing. To see this, suppose, for example, that {A, B} considers seceding from {A, B,C}.
They can do so, since γA + γB > γC . However, we know from the previous paragraph that the
subcoalition {A, B} is itself not self-enforcing, since after this coalition is established, agent B
would secede and eliminate A. Anticipating this, agent A would not support the subcoalition
{A, B}. A similar argument applies for all other subcoalitions. Moreover, since agent C is not
powerful enough to secede from the original coalition by himself, the three-person coalition
{A, B,C} is self-enforcing and will be the ruling coalition.

Next, consider a society consisting of four individuals, A, B,C, and D. Suppose that we
have γA = 3,γB = 4,γC = 5, and γD = 10. D’s power is insufficient to eliminate the coali-
tion {A, B,C} starting from the initial coalition {A, B,C}. Nevertheless, D is stronger than any
two of A, B,C. This implies that any three-person coalition that includes D would not be self-
enforcing. Anticipating this, any two of {A, B,C, D} would decline D’s offer to secede. However,
{A, B,C} is self-enforcing, thus the three agents would be happy to eliminate D. Therefore, in
this example, the ruling coalition again consists of three individuals but interestingly excludes
the most powerful individual D.

The most powerful individual is not always eliminated. Consider the society with γA = 2,
γB = 4,γC = 7, and γD = 10. In this case, among the three-person coalitions only {B,C, D} is
self-enforcing, and it will eliminate the weakest individual, A, and become the ruling coalition.
This example also illustrates why three-person coalitions (22 − 1 = 3) may be more likely than
two-person (and also four-person) coalitions.3

Although our model is abstract, it captures a range of economic forces that appear salient
in non-democratic, weakly institutionalized polities. The historical example of Stalin’s Soviet
Russia illustrates this in a particularly clear manner. The Communist Party Politburo was the
highest ruling body of the Soviet Union. All top government positions were held by its mem-
bers. Though formally its members were elected at Party meetings, for all practical purposes

3. It also shows that in contrast to approaches with unrestricted side payments (e.g. Riker, 1962), the ruling coali-
tion will not generally be a minimal winning coalition (the unique minimum winning coalition is {A, D}, which has the
minimum power among all winning coalitions).

c© 2008 The Review of Economic Studies Limited
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990 REVIEW OF ECONOMIC STUDIES

the Politburo determined the fates of its members, as well as those of ordinary citizens. Soviet
archives contain execution lists signed by Politburo members; sometimes a list would contain
one name, but some lists from the period of 1937–1939 contained hundreds or even thousands
names (Conquest, 1968).

Of 40 Politburo members (28 full, 12 non-voting) appointed between 1919 and 1952, only
12 survived through 1952. Of these 12, 11 continued to hold top positions after Stalin’s death in
March 1953. There was a single Politburo member (Petrovsky) in 33 years who left the body and
survived. Of the 28 deaths, there were 17 executions decided by the Politburo, two suicides, one
death in prison immediately after arrest, and one assassination.

To interpret the interactions among Politburo members through the lenses of our model,
imagine that the Politburo consists of five members, and to illustrate our main points, suppose
that their powers are given by {3,4,5,10,20}. It can be verified that with α = 1/2, this five-
member coalition is self-enforcing. However, if either of the lower power individuals, 3,4,5, or
10, dies or is eliminated, then the ruling coalition consists of the singleton, 20. If, instead, 20
dies, the URC becomes {3,4,5} and eliminates the remaining most powerful individual 10. This
is because 10 is unable to form an alliance with less powerful players. While the reality of Soviet
politics in the first half of the century is naturally much more complicated, this simple example
sheds light on three critical episodes.

The first episode is the suicides of two members of the Politburo, Tomsky, and
Ordzhonikidze, during 1937–1938. An immediate implication of these suicides was a change
in the balance of power, something akin to the elimination of 5 in the {3,4,5,10,20} example
above. In less than a year, 11 current or former members of Politburo were executed. Consistent
with the ideas emphasized in our model, some of those executed in 1939 (e.g. Chubar, Kosior,
Postyshev, and Ezhov) had earlier voted for the execution of Bukharin and Rykov in 1937.
The second episode followed the death of Andrei Zhdanov in 1948 from a heart attack. Until
Zhdanov’s death, there was a period of relative “peace”: no member of this body had been ex-
ecuted in nine years. Montefiore (2003) describes how Zhdanov’s death immediately changed
the balance in the Politburo. The death gave Beria and Malenkov the possibility to have
Zhdanov’s supporters and associates in the government executed.4 The third episode followed the
death of Stalin himself in March 1953. Since the bloody purge of 1948, powerful Politburo mem-
bers conspired in resisting any attempts by Stalin to have any of them condemned and executed.
When in the Fall of 1952, Stalin charged two old Politburo members, Molotov and Mikoian, with
being the “enemies of the people”, the other members stood firm and blocked a possible trial
(see Montefiore, 2003; or Gorlizki and Khlevniuk, 2004). After Stalin’s death, Beria became the
most powerful politician in Russia. He was immediately appointed the first deputy prime minis-
ter as well as the head of the ministry of internal affairs and of the ministry of state security, the
two most powerful ministries in the U.S.S.R. His ally Malenkov was appointed prime minister,
and no one succeeded Stalin as the Secretary General of the Communist Party. Yet in only four
months, the all-powerful Beria fell victim to a military coup by his fellow Politburo members,
was tried, and was executed. In terms of our simple example with powers {3,4,5,10,20}, Beria
would correspond to 10. After 20 (Stalin) is out of the picture, {3,4,5} becomes the URC, so 10
must be eliminated.

Similar issues arise in other dictatorships when top figures were concerned with others
becoming too powerful. These considerations also appear to be particularly important in interna-
tional relations, especially when agreements have to be reached under the shadow of the threat of
war (e.g. Powell, 1999). For example, following both the world wars, many important features of

4. In contrast to the two other episodes from the Soviet Politburo we discuss here, the elimination of the associates
of Zhadanov could also be explained by competition between two groups within the Politburo rather than by competition
among all members and lack of commitment, which are the ideas emphasized by our model.

c© 2008 The Review of Economic Studies Limited
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ACEMOGLU ET AL. COALITION FORMATION 991

the peace agreements were influenced by the desire that the emerging balance of power among
states should be self-enforcing. In this context, small states were viewed as attractive because
they could unite to counter threats from larger states but they would be unable to become domi-
nant players. Similar considerations were paramount after Napoleon’s ultimate defeat in 1815. In
this case, the victorious nations designed the new political map of Europe at the Vienna Congress,
and special attention was paid to balancing the powers of Britain, Germany and Russia, to ensure
that “. . . their equilibrium behaviour. . . maintain the Vienna settlement” (Slantchev, 2005).5

Our paper is related to models of bargaining over resources, particularly in the context of
political decision making (e.g. models of legislative bargaining, such as Baron and Ferejohn,
1989; Calvert and Dietz, 1996; Jackson and Moselle, 2002). Our approach differs from these
papers, since we do not impose any specific bargaining structure and focus on self-enforcing
ruling coalitions.6

More closely related to our work are the models of equilibrium coalition formation, which
combine elements from both cooperative and non-cooperative game theory (e.g. Peleg, 1980;
Hart and Kurz, 1983; Greenberg and Weber, 1993; Chwe, 1994; Bloch, 1996; Mariotti, 1997; Ray
and Vohra, 1997, 1999, 2001; Seidmann and Winter, 1998; Konishi and Ray, 2001; Maskin, 2003;
Eguia, 2006; Pycia, 2006; Ray, 2007). The most important difference between our approach and
the previous literature on coalition formation is that, motivated by political settings, we assume
that the majority (or supermajority) of the members of the society can impose their will on those
players who are not a part of the majority. This feature both changes the nature of the game
and also introduces “negative externalities” as opposed to the positive externalities and free-
rider problems upon which the previous literature focuses (Ray and Vohra, 1999; Maskin, 2003).
A second important difference is that most of these works assume the possibility of binding
commitments (Ray and Vohra, 1997, 1999), while we suppose that players have no commitment
power. Despite these differences, there are important parallels between our results and the insights
of this literature. For example, Ray (1989) and Ray and Vohra (1997, 1999) emphasize that the
internal stability of a coalition influences whether it can block the formation of other coalitions,
including the grand coalition. In the related context of risk-sharing arrangements, Bloch, Genicot
and Ray (2006) show that stability of subgroups threatens the stability of a larger group.7 Another
related approach to coalition formation is developed by Moldovanu and Winter (1995), who study
a game in which decisions require appoval by all members of a coalition and show the relationship
of the resulting allocations to the core of a related cooperative game.8 Finally, Skaperdas (1998)
and Tan and Wang (1999) investigate coalition formation in dynamic contests. Nevertheless, none
of these papers study self-enforcing coalitions in political games without commitment, or derive
existence, generic uniqueness and characterization results similar to those in our paper.

The rest of the paper is organized as follows. Section 2 introduces the formal set-up. Section
3 provides our axiomatic treatment. Section 4 characterizes SPE of the extensive-form game of
coalition formation. It then establishes the equivalence between the ruling coalition of Section 3

5. Other examples of potential applications of our model in political games are provided in Pepinsky (2007), who
uses our model to discuss issues of coalition formation in non-democratic societies.

6. See also Perry and Reny (1994), Jehiel and Moldovanu (1999), and Gomes and Jehiel (2005) for models of
bargaining with a coalition structure.

7. In this respect, our paper is also related to work on “coalition-proof” Nash equilibrium or rationalizability, for
example, Bernheim, Peleg and Whinston (1987), Moldovanu (1992), and Ambrus (2006). These papers allow deviations
by coalitions in non-cooperative games, but impose that only stable coalitions can form. In contrast, these considerations
are captured in our model by the game of coalition formation and by the axiomatic analysis.

8. Our game can also be viewed as a “hedonic game”, since the utility of each player is determined by the com-
position of the ultimate coalition he belongs to. However, it is not a special case of hedonic games defined and studied in
Bogomolnaia and Jackson (2002), Banerjee, Konishi and Sonmez (2001), and Barbera and Gerber (2007), because of the
dynamic interactions introduced by the self-enforcement considerations. See Le Breton, Ortuno-Ortin and Weber (2008)
for an application of hedonic games to coalition formation.
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992 REVIEW OF ECONOMIC STUDIES

and the equilibria of this extensive-form game. Section 5 contains our main results on the nature
and structure of ruling coalitions in political games. Section 6 concludes. The appendix contains
the proofs of all the results presented in the text.

2. THE POLITICAL GAME

Let I denote the collection of all individuals, which is assumed to be finite. The non-empty
subsets of I are coalitions and the set of coalitions is denoted by C. In addition, for any X ⊂ I,
CX denotes the set of coalitions that are subsets of X and |X | is the number of members in X . In
each period there is a designated ruling coalition, which can change over time. The game starts
with ruling coalition N , and eventually the URC forms. We assume that if the URC is X , then
player i obtains baseline utility wi (X) ∈ R. We denote w(·) ≡ {wi (·)}i∈I .

Our focus is on how differences in the powers of individuals map into political decisions.
We define a power mapping to summarize the powers of different individuals in I:

γ : I→ R++,

where R++ = R+ \{0}. We refer to γi ≡ γ (i) as the political power of individual i ∈ I. In addi-
tion, we denote the set of all possible power mappings byR and a power mapping γ restricted to
some coalition N ⊂ I by γ |N (or by γ when the reference to N is clear). The power of a coalition
X is γX ≡ ∑

i∈X γi .
Coalition Y ⊂ X is winning within coalition X if and only if γY > αγX , where α ∈ [1/2,1)

is a fixed parameter referring to the degree of (weighted) supermajority. Naturally, α = 1/2
corresponds to majority rule. Moreover, since I is finite, there exists a large enough α (still less
than 1) that corresponds to unanimity rule. We denote the set of coalitions that are winning within
X byWX . Since α ≥ 1/2, if Y, Z ∈WX , then Y ∩ Z �=∅.

The assumption that pay-offs are given by the mapping w(·) implies that a coalition cannot
commit to a redistribution of resources or pay-offs among its members (e.g. a coalition consisting
of two individuals with powers 1 and 10 cannot commit to share the resource equally if it becomes
the URC). We assume that the baseline pay-off functions, wi (X) : I × C → R for any i ∈ N ,
satisfy the following properties.

Assumption 1. Let i ∈ I and X,Y ∈ C. Then

(1) If i ∈ X and i /∈ Y , then wi (X) > wi (Y )[i.e. each player prefers to be part of the URC].
(2) For i ∈ X and i ∈ Y , wi (X) > wi (Y ) ⇐⇒ γi/γX > γi/γY ( ⇐⇒ γX < γY )[i.e. for any two

URCs that he is part of, each player prefers the one where his relative power is greater].
(3) If i /∈ X and i /∈ Y , then wi (X) = wi (Y ) ≡ w−

i [i.e. a player is indifferent between URCs
he is not part of ].

This assumption is natural and captures the idea that each player’s pay-off depends posi-
tively on his relative strength in the URC. A specific example of function w(·) that satisfies these
requirements is sharing of a pie between members of the URC proportional to their power:

wi (X) = γX∩{i}
γX

=
{

γi/γX if i ∈ X

0 if i /∈ X .
(1)

The reader may want to assume (1) throughout the text for interpretation purposes, though
this specific functional form is not used in any of our results or proofs.

We next define the extensive-form complete information game � = (N ,γ |N ,w(·),α), where
N ∈ C is the initial coalition, γ is the power mapping, w(·) is a pay-off mapping that satisfies

c© 2008 The Review of Economic Studies Limited
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ACEMOGLU ET AL. COALITION FORMATION 993

Assumption 1, and α ∈ [1/2,1) is the degree of supermajority; denote the collection of such
games by G. Also, let ε > 0 be sufficiently small such that for any i ∈ N and any X,Y ∈ C, we
have

wi (X) > wi (Y ) �⇒ wi (X) > wi (Y )+2ε; (2)

(this holds for sufficiently small ε > 0 since I is a finite set). This immediately implies that for
any X ∈ C with i ∈ X , we have

wi (X)−w−
i > ε. (3)

The extensive form of the game � = (N ,γ |N ,w(·),α) is as follows. Each stage j of the
game starts with some ruling coalition N j (at the beginning of the game N0 = N ). Then the stage
game proceeds with the following steps:

1. Nature randomly picks agenda setter a j,q ∈ N j for q = 1.
2. [Agenda-setting step] Agenda setter a j,q makes proposal Pj,q ∈ CN j , which is a subcoali-

tion of N j such that a j,q ∈ Pj,q (for simplicity, we assume that a player cannot propose to
eliminate himself).

3. [Voting step] Players in Pj,q vote sequentially over the proposal (we assume that players
in N j\Pj,q automatically vote against this proposal). More specifically, Nature randomly
chooses the first voter, v j,q,1, who then casts his vote ṽ(v j,q,1) ∈ {ỹ, ñ} (Yes or No), then
Nature chooses the second voter v j,q,2 �= v j,q,1, etc. After all |Pj,q | players have voted, the
game proceeds to step 4 if players who supported the proposal form a winning coalition
within N j (i.e. if {i ∈ Pj,q : ṽ(i) = ỹ} ∈WN j ), and otherwise it proceeds to step 5.

4. If Pj,q = N j , then the game proceeds to step 6. Otherwise, players from N j\Pj,q are
eliminated and the game proceeds to step 1 with N j+1 = Pj,q (and j increases by 1 as a
new transition has taken place).

5. If q < |N j |, then next agenda setter a j,q+1 ∈ N j is randomly picked by Nature among
members of N j who have not yet proposed at this stage (so a j,q+1 �= a j,r for 1 ≤ r ≤ q),
and the game proceeds to step 2 (with q increased by 1). If q = |N j |, the game proceeds to
step 6.

6. N j becomes the URC. Each player i ∈ N receives total pay-off

Ui = wi (N j )− ε
∑

1≤k≤ j

I{i∈Nk }, (4)

where I{·} is the indicator function taking the value of 0 or 1.
The pay-off function (4) captures the idea that an individual’s overall utility is the difference

between the baseline wi (·) and disutility from the number of transitions (rounds of elimination)
this individual is involved in. The arbitrarily small cost ε can be interpreted as a cost of elimi-
nating some of the players from the coalition or as an organizational cost that individuals have
to pay each time a new coalition is formed. Alternatively, ε may be viewed as a means to refine
out equilibria where order of moves matters for the outcome. Note that � is a finite game: the
total number of moves, including those of Nature, does not exceed 4|N |3. Notice also that this
game form introduces sequential voting in order to avoid issues of individuals playing weakly
dominated strategies. Our analysis below will establish that the main results hold regardless of
the specific order of votes chosen by Nature.9

9. See Acemoglu, Egorov and Sonin (2006) both for the analysis of a game with simultaneous voting and a
stronger equilibrium notion, and for an example showing how, in the absence of the cost ε > 0, the order of moves may
matter.
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3. AXIOMATIC ANALYSIS

Before characterizing the equilibria of the dynamic game �, we take a brief detour and introduce
four axioms motivated by the structure of the game �. Although these axioms are motivated
by game �, they can also be viewed as natural axioms to capture the salient economic forces
discussed in the introduction. The analysis in this section identifies an outcome mapping � : G⇒
C that satisfies these axioms and determines the set of (admissible) URCs corresponding to each
game �. This analysis will be useful for two reasons. First, it will reveal certain attractive features
of the game presented in the previous section. Second, we will show in the next section that
equilibrium URCs of this game coincide with the outcomes picked by the mapping �.

More formally, consider the set of games � = (N ,γ |N ,w(·),α) ∈ G. Holding γ,w, and
α fixed, consider the correspondence φ : C ⇒ C defined by φ(N ) = �(N ,γ |N ,w,α) for any
N ∈ C. We adopt the following axioms on φ (or alternatively on �).

Axiom 1 (Inclusion). For any X ∈ C , φ(X) �=∅ and if Y ∈ φ(X), then Y ⊂ X.

Axiom 2 (Power). For any X ∈ C, Y ∈ φ(X) only if Y ∈WX .

Axiom 3 (Self-Enforcement). For any X ∈ C, Y ∈ φ(X) only if Y ∈ φ(Y ) .

Axiom 4 (Rationality). For any X ∈ C, for any Y ∈ φ(X) and for any Z ⊂ X such that
Z ∈WX and Z ∈ φ(Z) , we have that Z /∈ φ(X) ⇐⇒ γY < γZ .

Motivated by Axiom 3, we define the notion of a self-enforcing coalition as a coalition that
“selects itself”. This notion will be used repeatedly in the rest of the paper.

Definition 1. Coalition X ∈ P(I) is self-enforcing if X ∈ φ(X).

Axiom 1, Inclusion, implies that φ maps into subcoalitions of the coalition in question (and
that it is defined, that is, φ(X) �=∅). It therefore captures the feature introduced in � that players
that have been eliminated (sidelined) cannot rejoin the ruling coalition. Axiom 2, the power
axiom, requires a ruling coalition be a winning coalition. Axiom 3, the self-enforcement axiom,
captures the key interactions in our model. It requires that any coalition Y ∈ φ(X) should be
self-enforcing according to Definition 1. This property corresponds to the notion that in terms
of game �, if coalition Y is reached along the equilibrium path, then there should not be any
deviations from it. Finally, Axiom 4 requires that if two coalitions Y, Z ⊂ X are both winning
and self-enforcing and all players in Y ∩ Z strictly prefer Y to Z , then Z /∈ φ(X) (i.e. Z cannot
be the selected coalition). Intuitively, all members of winning coalition Y (both those in Y ∩ Z
by assumption and those in Y \ Z because they prefer to be in the URC) strictly prefer Y to Z ;
hence, Z should not be chosen in favour of Y . This interpretation allows us to call Axiom 4 the
Rationality Axiom. In terms of game �, this axiom captures the notion that, when he has the
choice, a player will propose a coalition in which his pay-off is greater.

At the first glance, Axioms 1–4 may appear relatively mild. Nevertheless, they are strong
enough to pin down a unique mapping φ. Moreover, under the following assumption, these
axioms also imply that this unique mapping φ is single valued.

Assumption 2. The power mapping γ is generic in the sense that for any X,Y ∈ C, γX =
γY implies X = Y . We also say that coalition N is generic or that numbers {γi }i∈N are generic if
mapping γ |N is generic.
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ACEMOGLU ET AL. COALITION FORMATION 995

Intuitively, this assumption rules out distributions of powers among individuals such that
two different coalitions have exactly the same total power. Notice that mathematically, genericity
assumption is without much loss of generality, since the set of vectors {γi }i∈I ∈R|I|

++ that are not
generic has Lebesgue measure 0 (in fact, it is a union of a finite number of hyperplanes in R|I|

++).

Theorem 1. Fix a collection of players I, a power mapping γ , a pay-off function w(·)
such that Assumption 1 holds, and α ∈ [1/2,1). Then

1. There exists a unique mapping φ that satisfies Axioms 1–4. Moreover, when γ is generic
(i.e. under Assumption 2), φ is single valued.

2. This mapping φ may be obtained by the following inductive procedure. For any k ∈ N, let
Ck = {X ∈ C : |X | = k}. Clearly, C = ∪k∈NCk . If X ∈ C1, then let φ(X) = {X}. If φ(Z) has
been defined for all Z ∈ Cn for all n < k, then define φ(X) for X ∈ Ck as

φ(X) = argmin
A∈M(X)∪{X}

γA, (5)

where

M(X) = {Z ∈ CX \{X} : Z ∈WX and Z ∈ φ(Z)}. (6)

Proceeding inductively φ(X) is defined for all X ∈ C.

The intuition for the inductive procedure is as follows. For each X , (6) defines M(X) as
the set of proper subcoalitions, which are both winning and self-enforcing. Equation (5) then
picks the coalitions inM(X) that have the least power. When there are no proper winning and
self-enforcing subcoalitions,M(X) is empty and X becomes the URC, which is captured by (5).
The proof of this theorem, like all other proofs, is in the appendix.

Theorem 1 establishes not only that φ is uniquely defined, but also that when Assumption 2
holds, it is single valued. In this case, with a slight abuse of notation, we write φ(X) = Y instead
of φ(X) = {Y }.

Corollary 1. Take any collection of players I, power mapping γ , pay-off function w(·),
and α ∈ [1/2,1). Let φ be the unique mapping satisfying Axioms 1–4. Then for any X,Y, Z ∈ C,
Y, Z ∈ φ(X) implies γY = γZ . Coalition N is self-enforcing, that is, N ∈ φ(N ), if and only if
there exists no coalition, X ⊂ N, X �= N that is winning within N and self-enforcing. Moreover,
if N is self-enforcing, then φ(N ) = {N }.

Corollary 1, which immediately follows from (5) and (6), summarizes the basic results on
self-enforcing coalitions. In particular, Corollary 1 says that a coalition that includes a winning
and self-enforcing subcoalition cannot be self-enforcing. This captures the notion that the stabil-
ity of smaller coalitions undermines the stability of larger ones.

As an illustration to Theorem 1, consider again three players A, B, and C and suppose
that α = 1/2. For any γA < γB < γC < γA + γB , Assumption 2 is satisfied and it is easy to
see that {A}, {B}, {C}, and {A, B,C} are self-enforcing coalitions, whereas φ({A, B}) = {B},
φ({A,C}) = φ({B,C}) = {C}. In this case, φ(X) is a singleton for any X . On the other hand,
if γA = γB = γC , all coalitions except {A, B,C} would be self-enforcing, while φ({A, B,C}) =
{{A, B},{B,C},{A,C}} in this case.
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996 REVIEW OF ECONOMIC STUDIES

4. EQUILIBRIUM CHARACTERIZATION

We now characterize the SPEs of game � defined in Section 2 and show that they correspond
to the ruling coalitions identified by the axiomatic analysis in the previous section. The next
subsection provides the main results. We then provide a sketch of the proofs. The formal proofs
are contained in the appendix.

4.1. Main results

The following two theorems characterize the SPE of game � = (N ,γ |N ,w,α) with initial coali-
tion N . As usual, a strategy profile σ in � is a SPE if σ induces continuation strategies that
are best responses to each other starting in any subgame of �, denoted �h , where h denotes the
history of the game, consisting of actions in past periods (stages and steps).

Theorem 2. Suppose that φ(N ) satisfies Axioms 1–4 (cf. (5) in Theorem 1). Then, for any
K ∈ φ(N ), there exists a pure strategy profile σK that is SPE and leads to URC K in at most one
transition. In this equilibrium player i ∈ N receives pay-off

Ui = wi (K )− εI{i∈K }I{N �=K }. (7)

This equilibrium pay-off does not depend on the random moves by Nature.

Theorem 2 establishes that there exists a pure strategy equilibrium leading to any coalition
that is in the set φ(N ) defined in the axiomatic analysis of Theorem 1.10 This is intuitive in view
of the analysis in the previous section: when each player anticipates members of a self-enforcing
ruling coalition to play a strategy profile such that they will turn down any offers other than K
and they will accept K , it is in the interest of all the players in K to play such a strategy for
any history. This follows because the definition of the set φ(N ) implies that only deviations that
lead to ruling coalitions that are not self-enforcing or not winning could be profitable. But the
first option is ruled out by induction while a deviation to a non-winning URC will be blocked by
sufficiently many players. The pay-off in (7) is also intuitive. Each player receives his baseline
pay-off wi (K ) resulting from URC K and then incurs the cost ε if he is part of K and if the initial
coalition N is not equal to K (because in this latter case, there will be one transition). Notice that
Theorem 2 is stated without Assumption 2 and does not establish uniqueness. The next theorem
strengthens these results under Assumption 2.

Theorem 3. Suppose Assumption 2 holds and suppose φ(N ) = K . Then any (pure or
mixed strategy) SPE results in K as the URC. The pay-off player i ∈ N receives in this equilib-
rium is given by (7).

Since Assumption 2 holds, the mapping φ is single valued (with φ(N ) = K ). Theorem 3
then shows that even though the SPE may not be unique in this case, any SPE will lead to K as the
URC. This is intuitive in view of our discussion above. Because any SPE is obtained by backward
induction, multiplicity of equilibria arises only when some player is indifferent between multiple
actions at a certain nod. However, as we show, this may only happen when a player has no effect
on equilibrium play and his choice between different actions has no effect on URC (in particular,
since φ is single valued in this case, a player cannot be indifferent between actions that will lead
to different URCs).

10. It can also be verified that Theorem 2 holds even when ε = 0. The assumption that ε > 0 is used in Theorem 3.
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ACEMOGLU ET AL. COALITION FORMATION 997

It is also worth noting that the SPE in Theorems 2 and 3 is “coalition-proof”. Since the game
� incorporates both dynamic and coalitional effects and is finite, the relevant concept of coalition-
proofness is Bernheim et al.’s (1987) perfectly coalition-proof Nash equilibrium (PCPNE). This
equilibrium refinement requires that the candidate equilibrium should be robust to deviations by
coalitions in all subgames when the players take into account the possibility of further deviations.
Since � introduces more general coalitional deviations explicitly, it is natural to expect the SPE
in � to be PCPNE. Indeed, if Assumption 2 holds, it is straightforward to prove that the set of
PCPNE coincides with the set of SPE.11

4.2. Sketch of the proofs

We now provide an outline of the argument leading to the proofs of the main results presented in
the previous subsection and we present two key lemmas that are central for these theorems.

Consider the game � and let φ be as defined in (5). Take any coalition K ∈ φ(N ). We will
outline the construction of the pure strategy profile σK , which will be a SPE and lead to K as the
URC.

Let us first rank all coalitions so as to “break ties” (which are possible, since we have not yet
imposed Assumption 2). In particular, let n : C←→ {1, · · · ,2|I| − 1} be a one-to-one mapping
such that for any X,Y ∈ C, γX > γY ⇒ n(X) > n(Y ), and if for some X �= K we have γX = γK ,
then n(X) > n(K ) (how the ties among other coalitions are broken is not important). With this
mapping, we have thus ranked (enumerated) all coalitions such that stronger coalitions are given
higher numbers, and coalition K receives the smallest number among all coalitions with the same
power. Now define the mapping χ : C→ C as

χ(X) = argmin
Y∈φ(X)

n(Y ). (8)

Intuitively, this mapping picks an element of φ(X) for any X and satisfies χ(N ) = K . Also,
note that χ is a projection in the sense that χ(χ(X)) = χ(X). This follows immediately since
Axiom 3 implies χ(X) ∈ φ(χ(X)) and Corollary 1 implies that φ(χ(X)) is a singleton.

The key to constructing a SPE is to consider off-equilibrium path behaviour. To do this,
consider a subgame in which we have reached a coalition X (i.e. j transitions have occurred and
N j = X ) and let us try to determine what the URC would be if proposal Y is accepted starting
in this subgame. If Y = X , then the game will end, and thus X will be the URC. If, on the other
hand, Y �= X , then the URC must be some subset of Y . Let us define the strategy profile σK such
that the URC will be χ(Y ). We denote this (potentially off-equilibrium path) URC following the
acceptance of proposal Y by ψX (Y ), so that

ψX (Y ) =
{

χ (Y ) if Y �= X ;

X otherwise.
(9)

By Axiom 1 and equations (8) and (9), we have that

X = Y ⇐⇒ ψX (Y ) = X. (10)

We will introduce one final concept before defining profile σK . Let FX (i) denote the
“favourite” coalition of player i if the current ruling coalition is X . Naturally, this will be the
weakest coalition among coalitions that are winning within X , that are self-enforcing and that

11. A formal proof of this result follows from Lemma 2 below and is available from the authors upon request.
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998 REVIEW OF ECONOMIC STUDIES

include player i . If there are several such coalitions, the definition of FX (i) picks the one with
the smallest n, and if there are none, it picks X itself. Therefore,

FX (i) = argmin
Y∈{Z :Z⊂X,Z∈WX ,χ(Z)=Z ,Z�i}∪{X}

n(Y ). (11)

Similarly, we define the “favourite” coalition of players Y ⊂ X starting with X at the current
stage. This is again the weakest coalition among those favoured by members of Y ; thus

FX (Y ) =
{

argmin
{Z :∃ i∈Y :FX (i)=Z}

n(Z) if Y �=∅;

X otherwise.
(12)

Equation (12) immediately implies that

for all X ∈ C : FX (∅) = X and FX (X) = χ(X). (13)

The first part is true by definition. The second part follows, since for all i ∈ χ(X), χ(X)
is feasible in the minimization (11), and it has the lowest number n among all winning self-
enforcing coalitions by (8) and (5) (otherwise there would exist a self-enforcing coalition Z that
is winning within X and satisfies γZ < γχ(X), which would imply that φ violates Axiom 4).
Therefore, it is the favourite coalition of all i ∈ χ(X), and thus FX (X) = χ(X).

Now we are ready to define profile σK . Take any history h and denote the player who is
supposed to move after this history a = a(h) if after h, we are at an agenda-setting step, and
v = v(h) if we are at a voting step deciding on some proposal P (and in this case, let a be the
agenda setter who made proposal P). Also denote the set of potential agenda setters at this stage
of the game by A. Finally, recall that ñ denotes a vote of “No” and ỹ is a vote of “Yes” . Then σK

is the following simple strategy profile where each agenda setter proposes his favourite coalition
in the continuation game (given current coalition X ) and each voter votes “No” against proposal
P if the URC following P excludes him or he expects another proposal that he will prefer to
come shortly.

σK =




agenda setter a proposes P = FX (a);

voter v votes




ñ
if either v /∈ ψX (P) or

v ∈ FX (A), P �= FX (A ∪{a}), and γFX (A) ≤ γψX (P);
ỹ otherwise.

(14)

In particular, notice that v ∈ FX (A) and P �= FX (A ∪ {a}) imply that voter v is part of
a different coalition that will be proposed by some future agenda setter if the current voting
fails, and γFX (A) ≤ γψX (P) implies that this voter will receive weakly higher pay-off under this
alternative proposal. This expression makes it clear that σK is similar to a “truth-telling” strategy;
each individual makes proposals according to his preferences (constrained by what is feasible)
and votes truthfully.

With the strategy profile σK defined, we can state the main lemma, which will essentially
constitute the bulk of the proof of Theorem 2. For this lemma, also denote the set of voters who
already voted “Yes” at history h by V +, the set of voters who already voted “No” by V −. Then,
V = P \ (V + ∪ V − ∪{v}) denotes the set of voters who will vote after player v .

Lemma 1. Consider the subgame �h of game � after history h in which there were exactly
jh transitions and let the current coalition be X. Suppose that strategy profile σK defined in (14)
is played in �h. Then
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ACEMOGLU ET AL. COALITION FORMATION 999

(a) If h is at agenda-setting step, the URC is R = FX (A ∪ {a}); if h is at voting step and
V + ∪{i ∈ {v} ∪ V : i votes ỹ in σK } ∈WX , then the URC is R = ψX (P); and otherwise
R = FX (A).

(b) If h is at the voting step and proposal P will be accepted, player i ∈ X receives pay-off

Ui = wi (R)− ε( jh + I{P �=X}(I{i∈P} + I{R �=P}I{i∈R})). (15)

Otherwise (if proposal P will be rejected or if h is at agenda-setting step), then player
i ∈ X receives pay-off

Ui = wi (R)− ε( jh + I{R �=X}I{i∈R}). (16)

The intuition for the results in this lemma is straightforward in view of the construction
of the strategy profile σK . In particular, part (a) defines what the URC will be. This follows
immediately from σK . For example, if we are at an agenda-setting step, then the URC will be the
favourite coalition of the set of remaining agenda setters, given by A ∪{a}. This is an immediate
implication of the fact that according to the strategy profile σK , each player will propose his
favourite coalition and voters will vote ñ (No) against current proposals if the strategy profile σK

will induce a more preferred outcome for them in the remainder of this stage. Part (b) simply
defines the pay-off to each player as the difference between the baseline pay-off, wi (R), as a
function of the URC R defined in part (a), and the costs associated with transitions.

Given Lemma 1, Theorem 2 then follows if strategy profile σK is a SPE (because in this
case URC will be K , and it will be reached with at most one transition). With σK defined in (14),
it is clear that no player can profitably deviate in any subgame.

The next lemma strengthens Lemma 1 for the case in which Assumption 2 holds by estab-
lishing that any SPE will lead to the same URC and pay-offs as those in Lemma 1.

Lemma 2. Suppose Assumption 2 holds and φ(N ) = {K }. Let σK be defined in (14). Then
for any SPE σ(in pure or mixed strategies), and for any history h, the equilibrium plays induced
by σ and by σK in the subgame �h will lead to the same URC and to identical pay-offs for each
player.

Since φ(N ) = {K }, Theorem 3 follows as an immediate corollary of this lemma (with
h =∅).

5. THE STRUCTURE OF RULING COALITIONS

In this section, we present several results on the structure of URCs. Given the equivalence result
(Theorems 2 and 3), we will make use of the axiomatic characterization in Theorem 1. Through-
out, unless stated otherwise, we fix a game � = (N ,γ,w(·),α) with w satisfying Assumption 1
and α ∈ [1/2,1). In addition, to simplify the analysis in this section, we assume throughout that
Assumption 2 holds and we also impose

Assumption 3. For no X,Y ∈ C such that X ⊂ Y the equality γY = αγX is satisfied.

Assumption 3 guarantees that a small perturbation of a non-winning coalition Y does not
make it winning. Similar to Assumption 2, this assumption fails only in a set of Lebesgue measure
0 (in fact, it coincides with Assumption 2 when α = 1/2). All proofs are again provided in the
appendix.
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5.1. Robustness

We start with the result that the set of self-enforcing coalitions is open (in the standard topol-
ogy); this is not only interesting per se but facilitates further proofs. Note that for game � =
(N ,γ,w(·),α), a power mapping γ (or more explicitly γ |N ) is given by a |N | -dimensional
vector {γi }i∈N ⊂ R

|N |
++. Denote the subset of vectors {γi }i∈N that satisfy Assumptions 2 and 3

by A(N ), and the subset of A(N ) for which �(N ,{γi }i∈N ,w,α) = N (i.e. the subset of power
distributions for which coalition N is stable) by S(N ) and let N (N ) =A(N )\S(N ).

Lemma 3.

1. The set of power allocations that satisfy Assumptions 2 and 3, A(N ), its subset for which
coalition N is self-enforcing, S(N ), and its subset for which coalition N is not self-
enforcing, N (N ), are open sets in R|N |

++. The set A(N ) is also dense in R|N |
++.

2. Each connected component of A(N ) lies entirely within either S(N ) or N (N ).

An immediate corollary of Lemma 3 is that if the distributions of powers in two different
games are “close”, then these two games will have the same URC and also that the inclusion of
sufficiently weak players will not change the URC. To state and prove this proposition, endow
the set of mappings γ , R, with the sup-metric, so that (R,ρ) is a metric space with ρ(γ,γ ′) =
supi∈I |γi −γ ′

i |. A δ-neighbourhood of γ is {γ ′ ∈R : ρ(γ,γ ′) < δ}.

Proposition 1. Consider � = (N ,γ,w(·),α) with α ∈ [1/2,1). Then

1. There exists δ > 0 such that if γ ′ : N → R++ lies within δ-neighbourhood of γ , then
�(N ,γ,w,α) = �(N ,γ ′,w,α).

2. There exists δ′ > 0 such that if α′ ∈ [1/2,1) satisfies |α′ −α| < δ′, then �(N ,γ,w,α) =
�(N ,γ,w,α′).

3. Let N = N1 ∪ N2 with N1 and N2 disjoint. Then, there exists δ > 0 such that for all N2 with
γN2 < δ, φ(N1) = φ(N1 ∪ N2).

This proposition is intuitive in view of the results in Lemma 3. It implies that URCs have
some degree of continuity and will not change as a result of small changes in power or in the
rules of the game.

5.2. Fragility of self-enforcing coalitions

Although the structure of ruling coalitions is robust to small changes in the distribution of power
within the society, it may be fragile to more sizeable shocks. The next proposition shows that in
fact the addition or the elimination of a single member of the self-enforcing coalition turns out to
be such a sizable shock when α = 1/2.

Proposition 2. Suppose α = 1/2 and fix a power mapping γ : I→ R++. Then

1. If coalitions X and Y such that X ∩Y =∅ are both self-enforcing, then coalition X ∪Y is
not self-enforcing.

2. If X is a self-enforcing coalition, then X ∪ {i} for i /∈ X and X \ {i} for i ∈ X are not
self-enforcing.

The most important implication is that, under majority rule α = 1/2, the addition or
the elimination of a single agent from a self-enforcing coalition makes this coalition no longer
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self-enforcing. This result motivates our interpretation in the Introduction of the power struggles
in Soviet Russia following random deaths of Politburo members.

5.3. Size of ruling coalitions

Proposition 3. Consider � = (N ,γ,w(·),α).

1. Suppose α = 1/2, then for any n and m such that 1 ≤ m ≤ n, m �= 2, there exists a set of
players N, |N | = n and a generic mapping of powers γ such that |φ(N )| = m. In particular,
for any m �= 2 there exists a self-enforcing ruling coalition of size m. However, there is no
self-enforcing coalition of size 2.

2. Suppose that α > 1/2, then for any n and m such that 1 ≤ m ≤ n,there exists a set of players
N, |N | = n, and a generic mapping of powers γ such that |φ(N )| = m.

These results show that one can say relatively little about the size and composition of URCs
without specifying the power distribution within the society further (except that when α = 1/2,
coalitions of size 2 are not self-enforcing). However, this is largely due to the fact that there
can be very unequal distributions of power. For the potentially more interesting case in which
the distribution of power within the society is relatively equal, much more can be said about the
size of ruling coalitions. In particular, the following proposition shows that, as long as larger
coalitions have more power and there is majority rule (α = 1/2), only coalitions of size 2k − 1
for some integer k (i.e. coalitions of size 1, 3, 7, 15, etc.) can be the URC (Part 1). Part 2 of the
proposition provides a sufficient condition for this premise (larger coalitions are more powerful)
to hold. The rest of the proposition generalizes these results to societies with values of α > 1/2.

Proposition 4. Consider � = (N ,γ,w(·),α) with α ∈ [1/2,1).

1. Let α = 1/2 and suppose that for any two coalitions X,Y ∈ C such that |X | > |Y | we have
γX > γY (i.e. larger coalitions have greater power). Then φ(N ) = N if and only if |N | = km

where km = 2m − 1, m ∈ Z. Moreover, under these conditions, any ruling coalition must
have size km = 2m −1 for some m ∈ Z.

2. For the condition ∀X,Y ∈ C : |X | > |Y | ⇒ γX > γY to hold, it is sufficient that there exists
some λ > 0 such that

|N |∑
j=1

|γ j

λ
−1| < 1. (17)

3. Suppose α ∈ [1/2,1) and suppose that γ is such that for any two coalitions X ⊂ Y ⊂ N
such that |X | > α|Y |(|X | < α|Y | , resp.) we have γX > αγY (γX < αγY , resp.). Then
φ(N ) = N if and only if |N | = km,α , where k1,α = 1 and km,α = �km−1,α/α�+1 for m > 1,
where �z� denotes the integer part of z.

4. There exists δ > 0 such that maxi, j∈N {γi/γ j } < 1 + δ implies that |X | > α|Y | (|X | <
α|Y |, resp.) whenever γX > αγY (γX < αγY , resp.). In particular, coalition X ∈ C is self-
enforcing if and only if |X | = km,α for some m (where km,α is defined in Part 3).

This proposition shows that although it is impossible to make any general claims about the
size of coalitions without restricting the distribution of power within the society, a tight charac-
terization of the structure of the URC is possible when individuals are relatively similar in terms
of their power.
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5.4. Power and the structure of ruling coalitions

One might expect that an increase in α—the supermajority requirement—cannot decrease the size
of the URC. One might also expect that if an individual increases his power (either exogenously
or endogenously), this should also increase his pay-off. However, both of these are generally not
true. Consider the following simple example: let w(·) be given by (1). Then coalition (3,4,5)
is self-enforcing when α = 1/2, but is not self-enforcing when 4/7 < α < 7/12, because (3,4)
is now a self-enforcing and winning subcoalition. Next, consider game � with α = 1/2 and five
players A, B,C, D, E with powers γA = γ ′

A = 2, γB = γ ′
B = 10, γC = γ ′

C = 15, γD = γ ′
D = 20,

γE = 21, and γ ′
E = 40. Then �(N ,γ,w,α) = {A, D, E}, while �(N ,γ ′,w,α) = {B,C, D}, so

player E , who is the most powerful player in both cases, belongs to �(N ,γ,w,α) but not to
�(N ,γ ′,w,α).

We summarize these results in the following proposition (proof omitted).

Proposition 5.

1. An increase in α may reduce the size of the ruling coalition. That is, there exists a society
N, a power mapping γ and α,α′ ∈ [1/2,1), such that α′ > α but for all X ∈ �(N ,γ,w,α)
and X ′ ∈ �(N ,γ,w,α′), |X | > |X ′| and γX > γX ′ .

2. There exists a society N, α ∈ [1/2,1), two mappings γ,γ ′ : N → R++ satisfying γi = γ ′
i

for all i �= j , γ j < γ ′
j such that j ∈ �(N ,γ,w,α), but j /∈ �(N ,γ ′,w,α). Moreover, this

result applies even when j is the most powerful player in both cases, that is, γ ′
i = γi <

γ j < γ ′
j for all i �= j .

Intuitively, higher α turns certain coalitions that were otherwise non-self-enforcing into self-
enforcing coalitions. But this implies that larger coalitions are now less likely to be self-enforcing
and less likely to emerge as the ruling coalition. This, in turn, makes larger coalitions more
stable. The first part of the proposition therefore establishes that greater power or “agreement”
requirements in the form of supermajority rules do not necessarily lead to larger ruling coalitions.
The second part implies that being more powerful may be a disadvantage, even for the most
powerful player. This is for the intuitive reason that other players may prefer to be in a coalition
with less powerful players so as to receive higher pay-offs.

This latter result raises the question of when the most powerful player will be part of the
ruling coalition. This question is addressed in the next proposition.

Proposition 6. Consider the game �(N ,γ,w(·),α) with α ∈ [1/2,1), and suppose that
γ1, . . . ,γ|N | is an increasing sequence. If γ|N | ∈ (α

∑|N |−1
j=2 γ j/(1 − α),α

∑|N |−1
j=1 γ j/(1 − α)),

then either coalition N is self-enforcing or the most powerful individual, |N |, is not a part of the
URC.

6. CONCLUDING REMARKS

We presented an analysis of political coalition formation in non-democratic societies. The ab-
sence of strong institutions regulating political decision making in such societies implies that
individuals competing for power cannot make binding promises (e.g. they will be unable to com-
mit to a certain distribution of resources in the future) and they will also be unable to commit to
abide by the coalitions they have formed. This latter feature implies that once a particular ruling
coalition has formed, a subcoalition can try to sideline some of the original members. These con-
siderations imply that ruling coalitions in non-democratic societies should be self-enforcing, in
the sense that there should not exist a self-enforcing subcoalition that can sideline some of the
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members of this ruling coalition. This implies that coalition formation in such political games
must be forward-looking; at each point, individuals have to anticipate how future coalitions will
behave. Despite this forward-looking element, we showed that self-enforcing ruling coalitions
can be determined in a relatively straightforward manner. In particular, we presented both an
axiomatic analysis and a non-cooperative game of coalition formation, and established that both
approaches lead to the same set of self-enforcing ruling coalitions. Moreover, because such coali-
tions can be characterized recursively (by induction), it is possible to characterize the key prop-
erties of self-enforcing ruling coalitions in general societies.

Our main results show that such ruling coalitions always exist and that they are generically
unique. Moreover, a coalition will be a self-enforcing ruling coalition if and only if it does not
possess any subcoalition that is sufficiently powerful and self-enforcing. We also demonstrated
that although equilibrium ruling coalitions are robust to small perturbations, the elimination of a
member of a self-enforcing coalition corresponds to a “large” shock and may change the nature
of the ruling coalition dramatically. This result provides us with a possible interpretation for the
large purges that took place in Stalin’s Politburo following deaths of significant figures. Finally,
we showed that although ruling coalitions can, in general, be of any size, once we restrict atten-
tion to societies where power is relatively equally distributed, we can make strong predictions on
the size of ruling coalitions (e.g. with majority rule, α = 1/2, the ruling coalition must be of the
size 2k −1, where k is an integer).

Naturally, the result that the URC always exists and is generically unique depends on some
of our assumptions. In particular, the assumption that there is no commitment to future division
of resources is crucial both for the uniqueness and the characterization results. Other assumptions
can be generalized, however, without changing the major results in the paper. For instance, the
pay-off functions can be generalized so that individuals may sometimes wish to be part of larger
coalitions, without affecting our main results.

Other interesting areas of study in this context relate to some of the results presented in
Section 5. For example, we saw that individuals with greater power may end up worse off. This
suggests that individuals may voluntarily want to relinquish their power (e.g. their guns) or they
may wish to engage in some type of power exchange before the game is played. Some of these
issues were discussed in the working paper version of our paper, Acemoglu et al. (2006), and
developing these themes in the context of more concrete problems appears to be a fruitful area
for future research. The two most important challenges in future research are to extend these
ideas to games that are played repeatedly and are subject to shocks, and to relax the assumption
that individuals that are sidelined have no say in future decision making. Relaxing the latter
assumption is particularly important to be able to apply similar ideas to political decision making
in democratic societies.

APPENDIX

Proof of Theorem 1. Consider first the properties of the setM(X) in (6) and the mapping φ(X) in (5) (Step 1).
We then prove that φ(X) satisfies Axioms 1–4 (Step 2) and that this is the unique mapping satisfying Axioms 1–4 (Step
3). Finally, we establish that when Assumption 2 holds, φ is single valued (Step 4). These four steps together prove both
parts of the theorem.

Step 1. Note that at each step of the induction procedure,M(X) is well-defined because Z in (6) satisfies |Z | < |X |
and thus φ has already been defined for Z . The argmin set in (5) is also well defined, because it selects the minimum of a
finite number of elements (this number is smaller than 2|X |; X is a subset of I, which is finite). Non-emptiness follows,
since the choice set includes X . This implies that this procedure uniquely defines some mapping φ (which is uniquely
defined, but not necessarily single-valued).

Step 2. Take any X ∈ C. Axiom 1 is satisfied, because either φ(X) = X (if |X | = 1) or is given by (5), so φ(X)

contains only subsets of X such that φ(X) �= ∅. Furthermore, in both cases, φ(X) contains only winning (within X )
coalitions, and thus Axiom 2 is satisfied.
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To verify that Axiom 3 is satisfied, take any Y ∈ φ(X). Either Y = X or Y ∈M(X). In the first case, Y ∈ φ(X) =
φ(Y ), while in the latter, Y ∈ φ(Y ) by (6).

Finally, Axiom 4 holds trivially when |X | = 1, since there is only one winning coalition. If |X | > 1, take Y ∈ φ(X)

and Z ⊂ X , such that Z ∈WX and Z ∈ φ(Z). By construction of φ(X), we have that

Y ∈ argmin
A∈M(X)∪{X}

γA.

Note also that Z ∈M(X)∪{X} from (6). Then, if

Z /∈ argmin
A∈M(X)∪{X}

γA,

we must have γZ > γY , and vice versa, which completes the proof that Axiom 4 holds.
Step 3. We next prove that Axioms 1–4 define a unique mapping φ. Suppose that there exist φ and φ′ �= φ that

satisfy these axioms. Then, Axioms 1 and 2 imply that if |X | = 1, then φ(X) = φ′(X) = X ; this is because φ(X) �= ∅

and φ(X) ⊂ CX and the same applies to φ′(X). Therefore, there must exist k > 1 such that for any A with |A| < k,
we have φ(A) = φ′(A), and there exists X ∈ C, |X | = k, such that φ(X) �= φ′(X). Without loss of generality, suppose
Y ∈ φ(X) and Y /∈ φ′(X). Take any Z ∈ φ′(X) (such Z exists by Axiom 1 and Z �= Y by hypothesis). We will now derive
a contradiction by showing that Y /∈ φ(X).

We first prove that γZ < γY . If Y = X , then γZ < γY follows immediately from the fact that Z �= Y and Z ⊂ X
(by Axiom 1). Now, consider the case Y �= X , which implies |Y | < k (since Y ⊂ X ). By Axioms 2 and 3, Y ∈ φ(X)

implies that Y ∈WX and Y ∈ φ(Y ); however, since |Y | < k, we have φ(Y ) = φ′(Y ) (by the hypothesis that for any A
with |A| < k, φ(A) = φ′(A)) and thus Y ∈ φ′(Y ). Next, since Z ∈ φ′(X), Y ∈WX , Y ∈ φ′(Y ) and Y /∈ φ′(X), Axiom 4
implies that γZ < γY .

Note also that Z ∈ φ′(X) implies (from Axioms 2 and 3) that Z ∈WX and Z ∈ φ′(Z). Moreover, since γZ < γY ,
Z �= X and therefore |Z | < k (since Z ⊂ X ). This again yields Z ∈ φ(Z) by hypothesis. Since Y ∈ φ(X), Z ∈ φ(Z),

Z ∈WX , γZ < γY , Axiom 4 implies that Z ∈ φ(X). Since Z ∈ φ(X), Y ∈ φ(Y ), Y ∈WX , γZ < γY , Axiom 4 implies
that Y /∈ φ(X), yielding a contradiction. This completes the proof that Axioms 1–4 define at most one mapping.

Step 4. Suppose Assumption 2 holds. If |X | = 1, then φ(X) = {X} and the conclusion follows. If |X | > 1, then φ(X)

is given by (5) ; since under Assumption 2 there do not exist Y, Z ∈ C such that γY = γZ ,

argmin
A∈M(X)∪{X}

γA

must be a singleton. Consequently, for any |X |, φ(X) is a singleton, and φ is single-valued. This completes the proof of
Step 4. ‖

Proof of Lemma 1. This lemma is proved by induction on the maximum length of histories of � (the number of
steps in subgame �h ).

Base. If �h includes one last step only, this means that the current coalition is some X and the current step is voting
by the last voter v is voting over the last agenda setter’s proposal P = X . In this case, � implies that the URC must be
R = X = ψX (X) = FX (∅) and it does not depend on v’s vote. Moreover, there are no more eliminations, hence each
player i who was not eliminated before receives wi (R)− ε jh , which coincides with both (15) and (16).

Step. Suppose that the result is proved for all proper subgames of �h . Consider two cases.
Case 1. The current step is voting. Then, proposal P will be accepted if and only if V + ∪{i ∈ {v}∪ V : i votes ỹ in

σK } ∈WX (recall the definitions of V , V −, and V + from the text as the set of future voters, the set of those that have
voted ñ and the set of those that have voted ỹ respectively). If P is accepted, the URC will be X if P = X , while if
P �= X , the game will have a transition to P , after which the URC will be FP (P) = χ(P) by induction (recall that after
transition the game proceeds to an agenda-setting step). In both cases, the URC R = ψX (P). If P = X , player i ∈ X
gets wi (X)− ε jh , which equals (15). If P �= X , player i ∈ P receives wi (R)− ε( jh + 1 + I{R �=P}I{i∈R}), which in this
case equals (15), while player i ∈ X \ P obtains w−

i − ε jh , which again equals (15) because i /∈ χ(P) ⊂ P . On the other
hand, if proposal P is rejected, then the game ends when the voting ends if A = ∅ (then R = X = FX (∅) = FX (A),
and each player i ∈ X gets wi (R) − ε jh , which equals (16)) or, if A �= ∅, the game continues with some b ∈ X as
agenda setter and the remaining set of agenda setters being B = A \ {b}. In the latter case, we know by induction that
R = FX (B ∪{b}) = FX (A) will be the URC, and the pay-off player i ∈ X receives is given by (16).

Case 2. The current step is agenda setting; suppose player a is to propose P = FX (a). Note first that such P satisfies
ψX (P) = P . Indeed, this automatically holds if P = X , while if P �= X , then ψX (P) = χ(P), but for P = FX (a) �= X
we must have χ(P) = P by (11), so ψX (P) = P . Consider two subpossibilities. First, suppose P = FX (A ∪{a}). Then,
as (14) suggests, each player i ∈ ψX (P) will vote for ỹ. Note that ψX (P) is necessarily winning, within X : if P = X it
follows from X = ψX (P) ∈WX , while if P �= X , then, as we just showed, ψX (P) = P = FX (a), which is winning by

c© 2008 The Review of Economic Studies Limited

 at N
orthw

estern U
niversity L

ibrary, Serials D
epartm

ent on D
ecem

ber 27, 2012
http://restud.oxfordjournals.org/

D
ow

nloaded from
 

http://restud.oxfordjournals.org/


ACEMOGLU ET AL. COALITION FORMATION 1005

(11). This means that if proposal P = FX (A∪{a}), it is accepted, and R = P = FX (A∪{a}) both in the case P = X and
P �= X (in the latter case, R = ψX (P) by induction, and ψX (P) = P). Pay-offs in this case are given by (16) because
there are no more transitions if P = X , and exactly one more transition if P �= X , and only players in P get the additional
−ε. Second, consider the case P �= FX (A ∪ {a}). Then γFX (A) ≤ γψX (P), for γFX (A) > γψX (P), would imply that
minimum in (12) for Y = A ∪{a} �= ∅ is reached at FX (a) = ψX (P) = P and thus P = FX (A ∪{a}), which leads to a
contradiction. But then, as (14) suggests, all players in FX (A) ∈WX will vote against proposal P , and thus P will be
rejected. We know by induction that then R = FX (A), and the pay-offs are given by (16). This completes the proof of
Lemma 1. ‖

Proof of Theorem 2. Profile σK involves only pure strategies. Applying Lemma 1 to the first stage where h =∅,
we deduce that the URC under σK is FN (N ) = χ(N ) = K , and pay-offs are given by (16), which equals (7) because
jh = 0 (there were no eliminations before and N = X , K = R). The theorem is therefore proved if we establish that
profile σK is a SPE. To do this we show that there is no profitable one-shot deviation, which is sufficient, since � is finite.

Suppose, to obtain a contradiction, that there is a one-shot profitable deviation after history h; since only one player
moves at each history, this is either voter v or agenda setter a. Let us start with the former case, which is then subdivided
into two subcases:

Subcase 1. Suppose voter v votes ỹ in σK (this means v ∈ ψX (P) ⊂ P), but would be better off if he voted ñ.
In profile σK , the votes of players who vote after voter v (those in V ) do not depend on the vote of player v . Hence, if
proposal P is accepted in equilibrium, deviating to ñ can result in rejection, but not vice versa. This deviation may only be
profitable if voter v is pivotal, so we restrict attention to this case. From Lemma 1, the URC will be ψX (P) if proposal P
is accepted and FX (A) if P is rejected; the number of transitions will be between 0 and 2 (including transition from X to
P if P �= X ) in the first case and either 0 or 1 in the second case, so the number of transitions matters only if wv(ψX (P)) =
wv(FX (A)) (see (2)). Let us prove that v ∈ FX (A), γFX (A) ≤ γψX (P), and P �= FX (A ∪{a}). First, since deviation is
profitable, v ∈ FX (A) (recall that v ∈ ψX (P) simply because v votes ỹ in σK ). Second, if instead γFX (A) > γψX (P), this
would imply wv(FX (A)) < wv(ψX (P)) due to Assumption 1. Third, if instead P = FX (A ∪{a}), then ψX (P) = P (for
in this case either P = X or P = FX (i) for some i ∈ X ; the first case is trivial while the second is considered in the proof
of Lemma 1). But we just showed that either γFX (A) < γψX (P) or γFX (A) = γψX (P). In the first case, the minimum in
(12) for Y = A ∪{a} cannot be achieved at ψX (P) = P because n(FX (A)) < n(ψX (P)) and FX (A) is feasible in this
minimization problem, so P �= FX (A ∪{a}), which is a contradiction. In the second case, wv(FX (A)) = wv(ψX (P)),
and since FX (A) �= X if and only if ψX (P) �= X (FX (A) = X �= ψX (P) would contradict γFX (A) = γψX (P), and so
would FX (A) �= X = ψX (P)), the number of additional transitions is the same. Hence, deviation to ñ is not profitable
because with or without this deviation player v would get wv(FX (A))− ε( jh + I{FX (A)�=X}). This contradiction proves
that P �= FX (A ∪{a}). This, together with v ∈ FX (A) and γFX (A) ≤ γψX (P) implies that voter v must vote ñ in profile
σK , which contradicts the assumption that he votes ỹ.

Subcase 2. Suppose that voter v votes ñ in σK , but would be better off voting ỹ. Again, this deviation does not
change other voters’ votes; it can only change the URC from FX (A) to ψX (P) and is only profitable if v is pivotal.
Consider two possible cases. If v /∈ ψX (P), voting ỹ gives v exactly w−

v − ε( jh + 1) (v ∈ P , so v is part of transition
from X to P , and Lemma 1 implies that transition from P to ψX (P) �= P will proceed in one step, so v will participate
in exactly one more transition). Voting ñ will then result in at most one additional transition, so v obtains a pay-off no
less than wv(FX (A))−ε( jh +1). This implies that the pay-off of player v from voting ñ is at least as large as his pay-off
from deviating to ỹ, thus deviation is not profitable. On the other hand, if v ∈ ψX (P), then, as implied by equation (14),
v ∈ FX (A), γFX (A) ≤ γψX (P), and P �= FX (A ∪{a}). By Lemma 1, if v votes ñ, the URC is FX (A) and he receives
pay-off wv(FX (A)) − ε( jh + I{FX (A)�=X}); if he votes ỹ, the URC is ψX (P), and he receives wv(ψX (P)) − ε( jh +
I{P �=X}(1 + I{ψX (P)�=P})). But γFX (A) ≤ γψX (P) implies wv(FX (A)) ≥ wv(ψX (P)), so the deviation could only be
profitable for v if I{FX (A)�=X} > I{P �=X}(1+I{ψX (P)�=P}). This can only be true if FX (A) �= X , and ψX (P) = P = X . In
this case, however, strict inequality γFX (A) < γψX (P) holds, and therefore wv(FX (A)) > wv(ψX (P)). Then (2) implies
that deviation for v is not profitable. This completes the proof that no one-shot deviation by a voter may be profitable.

The remaining case is where agenda setter a has a best response Q �= P , and P = FX (a) does not belong to the best
response set. Consider two subcases.

Subcase 1. Suppose coalition P is accepted if proposed; in that case, Q cannot be rejected under profile σK . The
reason is as follows: if Q were rejected, then the URC would be FX (A). If i ∈ FX (A), then coalition FX (A) is feasible in
minimization problem (11), which means that wa(FX (A)) ≤ wa(P). If this inequality is strict, so wa(FX (A)) < wa(P),
then deviation to Q is not profitable; if wa(FX (A)) = wa(P), then the either FX (A) = P = X or neither FX (A) nor P
equals X , but in both cases a participates in the same number (0 or 1, respectively) of extra transitions, so utility from
proposing P and Q is the same and the deviation is not profitable either. If, however, i /∈ FX (A), then proposing Q will
give a pay-off w−

a − ε jh while proposing P will give at least wa(P)− ε( jh + 1) (again, ψX (P) = P for P = FX (a)),
so deviation is again not profitable. This proves that Q must be accepted, which immediately implies that ψX (Q) ∈
WX (only members of ψX (Q) vote for Q in σK , see (14)), and then Q ∈WX because ψX (Q) ⊂ Q. We next prove
that ψX (Q) = Q. Suppose, to obtain a contradiction, that ψX (Q) �= Q; this immediately implies Q �= X and thus
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ψX (Q) = χ(Q). If a proposed ψX (Q) instead of Q, it would be accepted, too. Moreover, the fact that χ is a projection
implies that ψX (ψX (Q)) = ψX (χ(Q)) = χ(χ(Q)) = χ(Q) = ψX (Q). In addition, any player i who votes ỹ if Q is
proposed is part of ψX (Q), and therefore would participate in voting for ψX (Q); moreover, he would vote ỹ under σK
in that case, too, because ψX (Q) �= FX (A ∪{a}) implies Q �= FX (A ∪{a}) (otherwise Q would satisfy ψX (Q) = Q),
and from (14) one can see that anyone who votes ñ if ψX (Q) is proposed would also vote ñ if Q were proposed.
Therefore, ψX (Q) would be accepted if proposed, but proposing ψX (Q) would result in only one transition while
proposing Q would result in two. Agenda setter a must be in ψX (Q), so proposing ψX (Q) is better than proposing Q,
which contradicts the assumption that Q is a best response for a and establishes that ψX (Q) = Q. Finally, for a to propose
Q, a ∈ Q must hold. We have proved that coalition Q is feasible in minimization (11) for i = a, and Q �= P implies
n(P) < n(Q). But in that case either γP < γQ (then a prefers having P instead of Q as the URC, even if it means an
extra transition) or γP = γQ (then a is indifferent, because the number of transitions is the same because both P = ψX (P)

and Q = ψX (Q)). These arguments together imply that deviation to Q is not profitable for a when P will be accepted
under σK .

Subcase 2. Suppose coalition P is rejected if proposed. Clearly, Q must be accepted, for otherwise the pay-offs
under the two proposals are identical and Q is not a profitable deviation. Since P = ψX (P) is winning within X , but
is not accepted, then, from (14), γFX (A) ≤ γψX (P) and P �= FX (A ∪ {a}). As in the previous case we can show that
Q ∈WX , ψX (Q) = Q, and a ∈ Q. Since Q is accepted, (14) implies that either γFX (A) > γψX (Q) or Q = FX (A∪{a}),
for otherwise members of winning coalition FX (A) would vote against Q in σK and Q would be rejected. In both
cases, n(Q) < n(P) (in the first case because γQ = γψX (Q) < γFX (A) ≤ γψX (P) = γP , and in the second case because
P = FX (a) is feasible in minimization (12) for Y = A ∪{a}, and P �= Q). This means, however, that P cannot be the
outcome in minimization (11) for i = a because Q is also feasible (Q ∈WX , a ∈ Q, and χ(Q) = Q because ψX (Q) = Q
and Q �= X where the latter follows from n(Q) < n(P)). This, however, contradicts that P = FX (a) by construction of
profile σK in (14). Therefore, there is no profitable deviation at the agenda setting step either. This completes the proof
of Theorem 2. ‖

Proof of Lemma 2. This proof also uses induction on the number of steps in �h .
Base. If only one step remains, then the current ruling coalition is some X , and this step must be voting by the

last voter v over proposal P = X made by the last agenda setter. Regardless of the vote (and therefore in either profile),
coalition X will be the URC, and each player i ∈ X will receive pay-off wi (X)− ε jh ; each players in N \ X will receive
the same pay-off under both profiles, because the intermediate coalitions and the number of transitions each player faced
is the same because histories up to the last step are identical.

Step. Take any history h and denote the first player to act in subgame �h by b and the pay-off to player i when b
plays action ξ by Ui (ξ). By induction this value is the same both if profile σ and σK is played thereafter. Consequently,
if some action is optimal for player b if profile σ is played in subgames of �h , the same is true if profile σK is played,
and vice versa. Let ξK be the action played by b in profile σK and ξ0 be an action played in profile σ with a non-zero
probability. Then both ξK and ξ0 must yield the same pay-off for b because both are optimal when σK is played thereafter.
Thus Ub(ξK ) = Ub(ξ0).

It therefore suffices to show that both action ξ0 followed by equilibrium play of profile σK and action ξK followed
by equilibrium play of the same profile σK result in the same URC and the same pay-off for all players i ∈ N (then
by induction, action ξ0 followed by equilibrium play of profile σ will result in the same URC and pay-offs). This is
clearly true when ξ0 = ξK . Now consider the case where ξ0 �= ξK . Both action ξK and action ξ0, accompanied by
equilibrium play of profile σK , will result in 0, 1, or 2 additional eliminations, as follows from Lemma 1: after the
first elimination, if any, equilibrium play will have at most one more elimination. This, together with (2), implies that
|wb(R0)−wb(RK )| ≤ 2ε and wb(R0) = wb(RK ), where R0 and RK are URCs if ξ0 and ξK are played by b, respectively.
There are two possibilities.

First, consider the case wb(R0) = wb(RK ) �= w−
b , then b ∈ R0, b ∈ RK , hence γR0 = γRK , and by Assumption 2,

R0 = RK , so that the URC is the same in both cases. The number of transitions is also the same (because b participates in
all transitions and is indifferent between ξ0 and ξK ). If there are no more transitions, then each player i ∈ X obtains utility
wi (R0)−ε jh for both actions. If there is exactly one transition from X to R0, then player i ∈ R0 gets wi (R0)−ε( jh +1)

and player i ∈ X \ R0 gets w−
i −ε jh . Consider the case where there are exactly two transitions both after ξ0 and ξK . This

cannot be the case if the first step of �h is agenda setting, for in that case Lemma 1 implies that if action ξK played under
profile σK , the equilibrium play involves only one more transition. Then the first step of �h is voting over some proposal
P; moreover, both action ξ0 and ξK will result in acceptance of this proposal, for a rejection, again by Lemma 1, would
lead to only one extra transition. But in that case the two additional transitions are from X to P and from P to ψX (P) �= P .
This establishes that each player i ∈ X receives the same pay-off regardless of whether b plays action ξ0 or ξK .

Second, consider the case wb(R0) = wb(RK ) = w−
b . Suppose first that b is agenda setter; then action ξK corre-

sponds to making proposal P = FX (b). Then, as implied by Lemma 1, the URC is FX (b) that b is part of (this happens if
P is accepted) or FX (A), which b may or may not be part of (this happens if P is rejected); here A is the set of would-be
agenda setters. In the case under consideration b /∈ RK , hence RK = FX (A) and Ub(ξK ) = w−

b − ε jh . Action ξ0 is the
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proposal of some coalition Q �= P such that b ∈ Q. If Q is accepted, but b /∈ R0, then b has an extra transition to Q but
is eventually eliminated, so he receives Ub(ξ0) = w−

b − ε( jh + 1), and this contradicts Ub(ξK ) = Ub(ξ0). Therefore, Q
must be rejected, the URC must be R0 = FX (A) = RK , and each player i ∈ R0 will receive wi (R0)− ε( jh + 1) while
i ∈ X \ R0 gets wi (R0)−ε jh in the case of either action. Now suppose that b is voting over some proposal P , then b ∈ P .
Then one of actions ξ0 and ξK is ỹ and the other ñ. For the action to matter, proposal must be accepted if ỹ is played and
rejected if ñ is played (or vice versa, but this is impossible under σK ). But recall that voter b is not a member of R0 and
RK . Therefore, b votes ỹ, he receives w−

i −ε( jh +1) (he does not participate in the second transition, which will happen
under σK because b ∈ P and b /∈ R0, b /∈ Rk ). On the other hand, if b votes ñ, then by Lemma 1 he receives w−

i − ε jh ,
because there is only one transition in which b is eliminated. But this means that Ub(ỹ) �= Ub(ñ), so Ub(ξ0) �= Ub(ξK ),
which implies that b cannot be indifferent between the two actions ξ0 and ξK , thus yielding a contradiction.

We have therefore proved that after either of the two actions ξ0 and ξK is played, the URC is the same and each
player i ∈ X is indifferent. But any player i ∈ N \ X is indifferent, too, because in this case the pay-offs are entirely
determined by history h. This completes the proof of the step of induction and therefore of Lemma 2. ‖

Proof of Theorem 3. The proof follows immediately from the application of Lemma 2 to the entire game �, which
is starting with history h = ∅. The lemma then implies that the URC in any SPE must coincide with that under the
strategy profile σK , that is, K , and pay-offs must be given by (7), as implied by Lemma 2. ‖

Proof of Lemma 3.
Part 1. The setA(N ) may be obtained from R

|N |
++ by subtracting a finite number of hyperplanes given by equations

γX = γY for all X,Y ∈ P(N ) such that X �= Y and by equations γY = αγX for all X,Y ∈ P(N ) such that X ⊂ Y .
These hyperplanes are closed sets (in the standard topology of R|N |

++); hence, a small perturbation of powers of a generic
point preserves this property (genericity). This ensures that A(N ) is an open set; it is dense because hyperplanes have
dimension lower than |N |. The proofs for S(N ) andN (N ) are by induction. The base follows immediately since S(N ) =
R++ andN (N ) =∅ are open sets. Now suppose that we have proved this result for all k < |N |. For any distribution of
powers {γi }i∈N , N is self-enforcing if and only if there are no proper winning self-enforcing coalitions within N . Now
take some small (in the sup-metric) perturbation of powers {γ ′

i }i∈N . If this perturbation is small, then the set of winning
coalitions is the same, and, by induction, the set of proper self-enforcing coalitions is the same as well. Therefore, the
perturbed coalition {γ ′

i } is self-enforcing if and only if the initial coalition with powers {γi } is self-enforcing; which
completes the induction step.

Part 2.Take any connected component A ⊂ A(N ). Both S(N )∩ A and N (N )∩ A are open in A in the topology
induced by A(N ) (and, in turn, by R|N |

++) by definition of induced topology. Also, (S(N )∩ A)∩ (N (N )∩ A) = ∅ and
(S(N )∩ A)∪ (N (N )∩ A) = A, which, given that A is connected, implies that either S(N )∩ A or N (N )∩ A is empty.
Hence, A lies either entirely within S(N ) orN (N ). This completes the proof. ‖

Proof of Proposition 1. The first two parts follow by induction. If N = 1, for any γ and α, �(N ,γ,w,α) = {N }.
Now suppose that this is true for all N with |N | < n; take any society N with |N | = n. We then use the inductive procedure
for determining �(N ,γ,w,α), which is described in Theorem 1. In particular, Assumptions 2 and 3 imply that the set
M(N ) in (6) is identical for �(N ,γ,w,α), �(N ,γ ′,w,α), and �(N ,γ,w,α′), provided that δ is sufficiently small (the
result self-enforcing coalitions remain self-enforcing after perturbation follows from Lemma 3). Moreover, if δ is small,
then γX > γY is equivalent to γ ′

X > γ ′
Y . Therefore, (5) implies that �(N ,γ,w,α) = �(N ,γ ′,w,α) = �(N ,γ,w,α′).

This completes the proof of Parts 1 and 2.
The proof of Part 3 is also by induction. Let |N1| = n. For n = 1 the result follows straightforwardly. Suppose next

that the result is true for n. If δ is small enough, then φ(N1) is winning within N = N1 ∪ N2; we also know that it is
self-enforcing. Thus we only need to verify that there exists no X ⊂ N1 ∪ N2 such that φ(X) = X (i.e. X that is self-
enforcing, winning in N1 ∪ N2 and has γX < γφ(N1)). Suppose, to obtain a contradiction, that this is not the case (i.e.
that the minimal winning self-enforcing coalition X ∈ P(N1 ∪ N2) does not coincide with φ(N1)). Consider its part that
lies within N1, X ∩ N1. By definition, γN1 ≥ γφ(N1) > γX ≥ γX∩N1 , where the strict inequality follows by hypothesis.
This string of inequalities implies that X ∩ N1 is a proper subset of N1, thus must have fewer elements than n. Then, by
induction, for small enough δ, φ(X ∩ N1) = φ(X) = X (since X is self-enforcing). However, φ(X ∩ N1) ⊂ N1, and thus
X ⊂ N1. Therefore, X is self-enforcing and winning within N1 (since it is winning within N1 ∪ N2). This implies that
γφ(N1) ≤ γX (since φ(N1) is the minimal self-enforcing coalition that is winning within N1). But this contradicts the
inequality γφ(N1) > γX and implies that the hypothesis is true for n +1. This completes the proof of Part 3. ‖

Proof of Proposition 2.
Part 1. Either X is stronger than Y or vice versa. The stronger of the two is a winning self-enforcing coalition that

is not equal to X ∪ Y . Therefore, X ∪ Y is not the minimal winning self-enforcing coalition, and so it is not the URC in
X ∪Y .
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Part 2. For the case of adding, it follows directly from Part 1, since coalition of one player is always self-enforcing.
For the case of elimination: suppose that it is wrong, and the coalition is self-enforcing. Then, by Part 1, adding this
person back will result in a non-self-enforcing coalition. This is a contradiction which completes the proof of Part 2. ‖

Proof of Proposition 3.
Part 1. Given Part 3 of Proposition 1 , it is sufficient to show that there is a self-enforcing coalition M of size m (then

adding n−m players with negligible powers to form coalition N would yield φ(N ) = φ(M) = M). Let i ∈ M = {1, . . . ,m}
be the set of players. If m = 1, the statement is trivial. Fix m > 2 and construct the following sequence recursively: γ1 = 2,
γk >

∑k−1
j=1 γ j for all k = 2,3, . . . ,m − 1, γm = ∑m−1

j=1 γ j − 1. It is straightforward to check that numbers {γi }i∈M are
generic. Let us check that no proper winning coalition within M is self-enforcing. Take any proper winning coalition X ;
it is straightforward to check that |X | ≥ 2, for no single player forms a winning coalition. If coalition X includes player
m (with power γm ), then it excludes some player k with k < m; his power γk ≥ 2 by construction. Hence,

γm =
m−1∑
j=1

γ j −1 >

m−1∑
j=1

γ j −γk ≥ γX\{m},

which means that player m is stronger than the rest, and thus coalition M is non-self-enforcing. If X does not include
γm , then take the strongest player in X ; suppose it is k, k ≤ m −1. However, by construction he is stronger than all other
players in X , and thus X is not self-enforcing. This proves that M is self-enforcing. However, if |X | = 2 and Assumption
2 holds, then one of the players, say player i , is stronger than the other one, and thus {i} is a winning self-enforcing
coalition. But then, by Corollary 1, X cannot be self-enforcing.

Part 2. The proof is identical to Part 1. The recursive sequence should be constructed as follows: γ1 = 2, γk >

α
∑k−1

j=1 γ j for all k = 2,3, . . . ,m −1, γm = α
∑m−1

j=1 γ j −1. ‖

Proof of Proposition 4.
Part 1. This part follows as a special case of Part 3. To see this, note that the condition in Part 4 is satisfied , since for

any X ⊂ Y ⊂ N , |X |≷ α|Y | ⇐⇒ |X |≷ |Y \ X | �⇒ γX ≷ γY\X ⇐⇒ γX ≷ αγY for α = 1/2. Moreover, the sequences
of km ’s in Part 1 and in Part 3 are equal, since k1 = 21 −1 = 1, and if km−1 = 2m−1 −1 then km = 2m −1 = �2km−1�+1
and thus the desired result follows by induction.

Part 2. Suppose, to obtain a contradiction, that the claim is false, that is, that for some X,Y ⊂ N such that |X | >

|Y | we have γX ≤ γY . Then the same inequalities hold for X ′ = X \ (X ∩ Y ) and Y ′ = Y \ (X ∩ Y ), which do not
intersect, so that

∑
j∈X ′ γ j ≤ ∑

j∈Y ′ γ j . This implies
∑

j∈X ′ γ j /λ ≤ ∑
j∈Y ′ γ j /λ, and thus

∑
j∈X ′ (γ j /λ−1)+|X ′| ≤∑

j∈Y ′ (γ j /λ−1)+|Y ′|. Rearranging, we have

1 ≤ |X ′|− |Y ′| ≤
∑
j∈Y ′

(γ j

λ
−1

)
−

∑
j∈X ′

(γ j

λ
−1

)
≤

∑
j∈X ′∪Y ′

∣∣∣γ j

λ
−1

∣∣∣ .

However, X ′ and Y ′ do not intersect, and therefore this violates (17). This contradiction completes the proof of Part 2.
Part 3. The proof is by induction. The base is trivial: a one-player coalition is self-enforcing, and |N | = k1 = 1. Now

assume the claim has been proved for all q < |N |, let us prove it for q = |N |. If |N | = km for some m, then any winning
(within N ) coalition X must have size at least α(�km−1/α� + 1) > km−1 (if it has smaller size then γX < αγN ). By
induction, all such coalitions are not self-enforcing, and this means that the grand coalition is self-enforcing. If |N | �= km
for any m, then take m such that km−1 < |N | < km . Now take the coalition of the strongest km−1 individuals. This
coalition is self-enforcing by induction. It is also winning (this follows since km−1 ≥ α�km−1/α� = α(km −1) ≥ α|N |,
which means that this coalition would have at least α share of power if all individuals had equal power, but since this is
the strongest km−1 individuals, the inequality will be strict). Therefore, there exists a self-enforcing winning coalition,
different from the grand coalition. This implies that the grand coalition is non-self-enforcing, completing the proof.

Part 4. This follows from Part 3 and Proposition 3. ‖

Proof of Proposition 6. Inequality γ|N | > α
∑n−1

j=2 γ j /(1 − α) implies that any coalition that includes |N | but

excludes even the weakest player will not be self-enforcing. The inequality γ|N | < α
∑n−1

j=2 γ j /(1 − α) implies that
player |N | does not form a winning coalition by himself. Therefore, either N is self-enforcing or φ(N ) does not include
the strongest player. ‖
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